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ABSTRACT  
The fatigue crack growth rate (FCGR) curve of metallic alloys is usually divided into three regions with steep 
slopes in regions I and III and a moderate linear slope in region II, which is often referred to as the Paris 
regime. However, there are many examples in literature that show that changes in the slope of region II are 
present. Linear behavior for regions I and III has been assumed by several researchers and led to a multi-
linear description of the entire FCGR curve. In this paper we will assume that fatigue crack growth is governed 
by power law behavior at all crack lengths and all stress intensity factor ranges (ΔK). To accommodate for 
changes in the multi-linear FCGR curve, mathematical pivot points are introduced in the FCGR equation, 
which allow for direct fitting of the crack length vs. cycles curve to obtain the FCGR. The ability to fit small 
and long crack growth curves for cracks growing in region I confirms that region I crack growth rate is 
governed by power law behavior. The FCGR results show that small cracks are faster, but the transition from 
region I to region II occurs at a specific fatigue crack growth rate for both small and long cracks. This results 
in an apparent shift in ΔK at the transition and points at inhomogeneous sampling as the reason for the lower 
threshold of small cracks. The accurate small crack growth rate measurements are combined with long crack 
growth rate measurements to calculate the fatigue life from initial discontinuity dimensions, which correspond 
to the fatigue life results that are experimentally obtained for smooth specimens. 

1.0 INTRODUCTION 

The fatigue crack growth rate curve of metallic alloys is usually divided into three regions: region I corresponds 
to the steep slope in the fatigue crack growth rate (FCGR) curve near the threshold. Crack nucleation and 
propagation in region I corresponds to stage I crack growth that occurs along favorably oriented slip planes, 
which results in a faceted or cleavage-like fracture surface appearance (Forsyth, 1963, 1961). Region II 
corresponds to a moderate linear slope in the FCGR curve. Crack propagation in region II corresponds to stage 
II, which occurs in the tensile mode and the fracture surface shows signs of plasticity (Forsyth, 1963, 1961). 
Region III is usually regarded as the steep slope in the FCGR curve prior to final failure of the specimen.  

In 1963, Paris et al. empirically showed that the FCGR has a power law relationship with the stress intensity 
factor range, ∆K, for region II fatigue crack growth (Paris and Erdogan, 1963): 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐶𝐶(∆𝐾𝐾)𝑛𝑛  ,      (1) 

where da/dN is the fatigue crack growth rate and C and n are constants. Around the same time power law 
behavior was also considered for region III and higher exponents were used to characterize the steeper slope 
in region III (Laird and Smith, 1962; Liu and Iino, 1969; McEvily and Boettner, 1963; Paris, 1964). In 1980 
Radhakrishnan also fitted region I FCGR data of steel from various sources with Eqn (1) and concluded that 
the exponent in region I was about 4 times the exponent in region II (although in the paper regions I and II are 
called stage IIa and IIb, respectively) (Radhakrishnan, 1980). Besides the changes in the slopes between the 
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three regions, Wilhem showed in 1967 that there is a knee, i.e. a change in exponent, in the region II fatigue 
crack growth rate curve when plotted on a double logarithmic scale. The knee in the FCGR curve corresponds 
to the initial formation of shear lips on the fracture surfaces (Wilhem, 1967). Stofanak et al. also observed a 
knee in the FCGR curve of an extruded aluminum alloy (Stofanak et al., 1983). They concluded that changes 
in the slope of the FCGR curve correspond to a change in micromechanism of fatigue crack growth. The 
change in slope between region I and region IIa appears to coincide with the fracture surface transition from 
broad faceted areas to rough, blocky, faceted areas. The change in exponent between region IIa to Region IIb 
corresponded to a change from faceted growth to striated growth. This transition was seen to occur when the 
reversed plastic zone size was similar to the subgrain dimension. Wanhill showed for aluminum alloy (AA) 
2024 that there are three transitions in the FCGR curve up to ~10-7 m/cycle (Wanhill, 1988). Wanhill also 
concluded that changes in fracture surfaces topography are associated with the transitions in the FCGR curve 
(Wanhill, 1988). Hence, the different stages of crack growth correspond to the different regions in the FCGR 
curve. Wanhill indicates that the transitions between regions occur when the monotonic or cyclic plane strain 
plastic zone size become equal to characteristic microstructural dimensions (Wanhill, 1988). The first 
transition occurs when the cyclic plastic zone size is equal to the mean planar distance between dispersoids, 
the second transition occurs when the cyclic plastic zone size is equal to the subgrain and dislocation cell sizes 
and the third occurs when the monotonic plastic zone size is equal to the grain dimensions (Wanhill, 1988).  
Newman et al. used five linear segments and four clear transition points to describe the FCGR curve of 
AA7075-T6 obtained from middle tension specimens in the L-T direction (Newman Jr. et al., 1994). The 
multilinear FCGR curve runs from 10-11 m/cycle to 10-4 m/cycle and the first three transitions occur at 1·10-9, 
1·10-8 and 6.4·10-8 m/cycle, which correspond to the three transitions observed by Yoder et al. for several 
7XXX-series aluminum alloys and by Wanhill for AA2024 (Wanhill, 1988; Yoder et al., 1982). The fourth 
transition occurs at 1·10-6 m/cycle and denotes the transition to rapid, unstable crack growth that is traditionally 
referred to as region III.  

Newman et al. used a look-up table to describe the FCGR curve, were the points in the table correspond to 
transition points (TP) in the FCGR curve. They used this approach because a multilinear curve was able to 
describe the FCGR data more accurately than a multi-parameter equation. However, Amsterdam et al. showed 
that a pivot point can be used to describe change in the slope of the FCGR curve (Amsterdam and Grooteman, 
2016):  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑇𝑇𝑇𝑇

� ∆𝐾𝐾
∆𝐾𝐾𝑇𝑇𝑇𝑇

�
𝑛𝑛𝑖𝑖

 ,     (2) 

where da/dNTP and ΔKTP are the FCGR and stress intensity factor range at the transition point where the slope, 
ni, is changing.  

The secant and incremental polynomial method, as described in ASTM E647, are normally used to obtain 
FCGR from the a-N curve (ASTM: E647-15, 2015). However, these methods result in noise in the FCGR 
curve and the amount of noise depends on 1) the method applied, 2) the error in the crack length measurement 
technique and 3) the crack length measurement frequency (Amsterdam, 2017; Amsterdam and Nawijn, 2018). 
In this paper we state that fatigue crack growth is governed by power law behavior at all crack lengths and all 
ΔK values. To accommodate for changes in the FCGR when there is a transition in crack propagation 
mechanisms, mathematical pivot points are introduced in the FCGR equation. The power law behavior and 
the introduction of pivot points allow for direct fitting of the a-N curve for long and small cracks to obtain the 
FCGR as function of ΔK. The advantage of directly fitting the a-N curve is that i) there is no noise in the 
resulting FCGR curve and ii) it is not necessary to fit noisy FCGR data with a model, because an exact 
description of the crack growth rate is known from the fit of the a-N curve. The accurate small and long FCGR 
data that is obtained using this method is used to predict and compare the fatigue life of smooth round stress-
life (S-N) coupons with experimental results. 
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2.0 MATERIALS AND METHODS 

2.1 Long crack specimen 
Constant amplitude (CA) fatigue crack growth tests were performed on middle tension (M(T)) specimens at 
different maximum stress (Smax) and different stress ratios (R=Smin/Smax). M(T) specimens with dimensions of 
500 mm x 160 mm were removed from aluminum alloy (AA) 7075-T7351 plate material with a thickness of 
6.35 mm. The rolling direction was in the length of the specimens, hence loading-crack growth was in the L-
T direction. Fatigue crack growth starter notches were central holes (1.6 mm diameter) with 0.7 mm deep 
electric discharge machined (EDM) slots on either side of the hole (total starter notch length of 3 mm). The 
EDM wire thickness was 0.16 mm. The area next to the starter notch was polished for optical crack growth 
measurements on both front and rear sides of the specimens. A constant amplitude 13.5 Hz sinusoidal load 
was introduced by a servo-hydraulic test machine with a 200 kN load cell. CA loading with the same maximum 
stress and stress ratio as for the actual test was used for pre-cracking the M(T) specimen to a single side crack 
length, a, of about 2 mm. The actual crack length after pre-cracking was measured with an optical travelling 
microscope.  

Holes were drilled at 8 mm above and below the starter notch hole for copper pins. These were used for 
automated crack length measurements by direct current potential drop (DCPD). The current was introduced to 
the specimen at the specimen clamping. The potential drop of the specimen and a reference specimen was 
measured every 9 seconds by Matalect DCM-2 equipment using 12 readings and 11 samples. Potential drop 
data acquisition occurred every 100 or 200 cycles depending on the estimated number of cycles to failure. The 
DCPD data was converted to crack length data using Equation A2.5 in ASTM E647 (ASTM: E647-15, 2015). 
Vr in Equation A2.5 in ASTM E647 was adjusted for each specimen such that the crack length from the DCPD 
measurements at the start of the test is equal to the crack length measured with the optical travelling microscope 
after pre-cracking. High resolution photographs of the front and rear side of the specimen with length markers 
were taken during initial tests to verify the DCPD measurements. The tests were performed in lab air 
environment. 

The stress intensity factor range, ΔK, for the M(T) specimens is calculated by: 

∆𝐾𝐾 = 𝛽𝛽(𝑎𝑎)∆𝑆𝑆√𝜋𝜋𝑎𝑎  ,     (3) 

where ΔS is the stress range during the test and β the Feddersen final width correction that is calculated 
according to ASTM E647 (ASTM: E647-15, 2015): 

𝛽𝛽 = �sec�𝜋𝜋𝑑𝑑
𝑊𝑊
�  ,     (4) 

where W is the width of the specimen. The effective stress intensity factor range, ΔKeff, is calculated using the 
Schijve crack closure correction (Schijve, 1986, 1981): 

∆𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒 = (0.55 + 0.33𝑅𝑅 + 0.12𝑅𝑅2)∆𝐾𝐾    (5) 

2.2 Small crack specimens 
Flat dogbone specimens were machined from the same 7075-T7351 plate as the M(T) specimens and tested 
with alternating CA and variable amplitude (VA) bands for quantitative fractography of small cracks. The CA 
bands consisted of 5000 high stress ratio CA cycles (R=0.77) and the crack dimensions and growth in a single 
band were determined in the scanning electron microscope (SEM) after failure of the specimen. Approximately 
500 blind holes have been machined on the both sides of the plate material (1038 in total per specimen). The 
blind holes act as seeded defects for nucleation of surface cracks. The blind holes have been machined using 
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an ultrashort pulse laser with a pulse length of 10 ps and a wavelength of 532 nm, operated at 10 kHz pulse 
repetition frequency. The holes were machined by scanning the laser in layers of several concentric circles. 
Multiple layers were used to machine the holes to a depth of about 80 µm. Rows of blind holes were made 
perpendicular to the loading direction and a spacing of 2 mm was used within a row. Separation of the rows in 
the direction of loading was 0.5 mm and adjacent rows were staggered by 1 mm to minimize interaction 
between growing cracks.  

The crack depth (a) at the deepest point was used to calculate ΔK. The geometry factor β for the surface cracks 
has been determined with AFGROW software for the deepest point of the surface crack as fraction of the 
thickness (t) using the measured crack dimensions (crack depth (a) / half of the surface length (c) ratio). The 
resulting geometry factor β is only applicable for these seeded defects: 

𝛽𝛽 = 0.5599(𝑎𝑎 𝑡𝑡⁄ )3 − 0.0953(𝑎𝑎 𝑡𝑡⁄ )2 + 0.2034(𝑎𝑎 𝑡𝑡⁄ ) + 0.5687  (6) 

2.3 Smooth round S-N coupons 
Smooth round coupons for stress-life testing were machined from 12.7 mm 7075-T7351 plate from the same 
mill. The coupons have a diameter of 3 mm and a reduced section length of 18 mm. The coupons have a stress 
concentration factor of unity (Kt=1) and were polished to a roughness of Ra<0.2 µm. A constant amplitude 25 
Hz sinusoidal load was introduced by a servo-hydraulic test machine with a 100 kN load cell. A stress ratio of 
0.1 was applied. 

S-N curves are typically plotted with the cycles to failure on the horizontal axis and the stress on the vertical 
axis. However, since the cycles to failure is the outcome of the test and the maximum stress is the input value, 
in this paper the independent variable stress is plotted on the horizontal axis and the dependent variable on the 
vertical axis. This is especially important when regression analysis is used to obtain a power law exponent by 
minimizing the error between the model and the dependent variable. Plotting it vice versa results in incorrect 
fitting parameters. 

2.4 Fractography 
A FEI field emission gun (FEG) SEM was used for fractography on all three specimen types and energy 
dispersive analysis of X-rays (EDX) was used in the SEM to measure the composition of constituent particles 
on the fracture surface. 

2.5 Fitting methodology 
Making use of Eqn (2), the crack length, a, was fitted as function of cycles, N, using the following equation: 

𝑎𝑎(𝑁𝑁) = 𝑎𝑎(0) + ∑ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑖𝑖

�∆𝐾𝐾𝑗𝑗
∆𝐾𝐾𝑖𝑖
�
𝑛𝑛𝑖𝑖𝑑𝑑−1

𝑗𝑗=0  ,    (7) 

where ΔKj is the stress intensity factor range during the jth cycle. For a constant stress range test ΔKj is a 
function of the crack length at the jth cycle, aj. The pivot points in the FCGR curve are located at the coordinates 
(da/dNi, ΔKi) and the suffix i denotes the pivot point number. The pivot points correspond to the locations 
where the slope changes in the FCGR curve. In the fitting procedure the error between the measured crack 
lengths and the crack lengths calculated by Eqn (7) are minimized in a least square fitting procedure by 
changing the coordinates of the pivot points, the crack growth rates at the start and the end of the measurement, 
and the number of pivot points.  
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The pivot point coordinates fully define the slopes in between two pivot points. The crack growth rates at the 
start and the end of the measurement are required to define the slopes towards the first and after the last pivot 
point, respectively. 

The error, 𝜖𝜖, between the model (Eqn (7)) and each data point of the measured a-N curve is calculated as 
follows: 

𝜖𝜖 = ∑ �𝑎𝑎�𝑗𝑗 − 𝑎𝑎𝑗𝑗�
2

𝑗𝑗∈𝑆𝑆  ,     (8) 

where 𝑎𝑎𝑗𝑗 and 𝑎𝑎�𝑗𝑗 are the measured and modelled crack lengths at the jth cycle respectively. The set 𝑆𝑆 contains 
the cycles at which a measured crack length was stored. 

When calculating Eqn (7), to find the crack growth rate at ∆𝐾𝐾 in between two transition points either of the 
adjacent transition points may be used along with the slope at ∆𝐾𝐾. For ∆𝐾𝐾 smaller than ∆𝐾𝐾1, the first slope, 
𝑛𝑛1,  is used with ∆𝐾𝐾1, for ∆𝐾𝐾 larger than ∆𝐾𝐾1, the last slope, 𝑛𝑛𝑖𝑖+1,  is used with ∆𝐾𝐾𝑖𝑖. 

3 RESULTS 

3.1 Long crack growth rate measurements 
Figure 1 shows a-N curves of two specimens that are tested at Smax=80 MPa and R=0.1. The crack lengths 
measured with DCPD show good agreement with the optical crack length measurements. The noise on the 
DCPD measurement is clearly visible due to the large amount of data points. The scatter in the optical 
measurements is less clear due to the limited number of measurements. The DCPD measurements are used to 
obtain the FCGR by fitting the DCPD a-N curves with Eq. 7. Figure 2 shows the normalized error between the 
DCPD a-N curve and the fit as a function of the number of slopes in the FCGR curve. Note that the number of 
slopes is one more than the number of transition points in a FCGR curve. The absolute value of the error 
depends on the number of data points, which depends on the test parameters. Therefore, the error of each 
specimen is normalized by the error at which the error does not significantly decreases anymore with increasing 
number of slopes. It is clear that the error does not decrease significantly when more than four slopes are used 
for specimen P1R2N2, and more than five for specimen P1R4N2 that is tested with a different stress ratio. 
When less than four or five slopes are used, the error between the fit and the measured a-N curve increases 
significantly. For specimen P2R3N1, which is tested at Smax=100 MPa and R=0.28, the number of slopes is 
less obvious and four or five slopes can be used the fit the a-N curve of this specimen. 

Figure 3a shows the crack length vs. cycles curve of several specimens tested at different maximum stress and 
different stress ratios. The colored dots represent the crack lengths measured with DCPD and the solid white 
line represents the best fit of Eqn (7) for each specimen. The black markers in the white line represent the 
transition points that correspond to the least number of transition points and slopes that are necessary to obtain 
a small error between the fit and the measured a-N curve. All fits run right through the DCPD crack length 
data points and show good agreement with the shape of the curve, also at small crack lengths. Figure 3b shows 
the resulting FCGR as a function of ∆K (dashed lines). Multiple changes to the slope can be observed and the 
transitions from one slope to the next occur at specific FCGRs for all curves. The shapes of the FCGR curves 
are similar and the horizontal shift between the individual curves originates from the difference in stress ratios, 
as is shown by plotting the FCGR as function of ΔKeff (solid lines). Since the FCGR of specimens P2R2N1, 
P2R1N7 and P1R4N2 at the start of the test are less than that of specimens P1R2N2 and P2R3N1, they require 
an additional transition point and slope at the beginning of the FCGR curve. For the FCGR range between 
3∙10-9 and 10-5 m/cycle a minimum of four transition points and five slopes are necessary to obtain accurate 
fits for all specimens. 
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Figure 1 Crack length vs. cycles (a-N) curve for two M(T) specimen tested at Smax=80 MPa and 

R=0.1. The grey points indicate the crack length measurements using DCPD and the larger black 
dots indicate the optical crack length measurements 

 
Figure 2 Normalized error between the measured a-N curve and the fit using Eqn (7) as function 

of the number of slopes in the FCGR curve 
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Figure 3 (a) Crack length vs. cycles (a-N) curves for M(T) specimens tested at different Smax and 
R. The white lines indicate the fit using Eqn (7) and the black symbols in the white lines indicate 
transitions points. (b) FCGR as a function of ΔK (bottom) and ΔKeff (top). The transition points 

are indicated by symbols 

Since specimen P2R3N1 has a similar FCGR range as specimen P1R2N2, the same number of slopes has been 
used to fit the a-N curve. The same fitting procedure can be used to fit the a-N data of a specimen tested with 
a very small constant stress range. Since the entire curve is fitted with Eqn (7), noise in the crack length 
measurement at very low FCGR (<10-10 mm/cycle) does not influence the results. Figure 4 shows the a-N 
curve for a naturally increasing ΔK test with initial FCGRs of < 10-10 m/cycle. The a-N curve can be fitted just 
as easily as a-N curves of specimens tested with higher stress ranges and higher crack growth rates. The insert 
shows the result of the fit and the FCGR at the start of the test is 5.8·10-11 m/cycle. The FCGR increases quickly 
with increasing ΔK until the slope changes at 8.7·10-10 m/cycle. The exponent of the initial slope is 8.43 and 
failure of the specimen at the end of the curve occurs by net-section overload. 

(a) 

(b) 
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Figure 4 a-N curve for an long crack specimen tested at a small stress range. The white line 

indicate the fit using Eqn (7) and the white symbols in the white line indicate transitions points. 
The insert shows the resulting FCGR as a function of ΔK 

3.2 Small crack growth rate measurements 
Figure 5 shows the fatigue crack growth rate obtained from a small crack by alternating constant amplitude 
(R=0.77) and variable amplitude markerbands. The open dots represent FCGRs that are obtained from 
measuring the width of the CA bands, while the solid line represent the results from the crack depth vs. cycles 
fit, similarly as for the long crack specimens. The exponent of the steep slope of the small crack in region I is 
12.8, which is greater than the exponent of the long crack in region I (n1=8.43). The second slope of the small 
crack is slightly lower than that of the long crack such that the two curves for small and long cracks coincide 
near the transition to the third slope at a crack depth of about 2.2 mm. 

3.3 From crack growth rate to fatigue (crack growth) life 
Figure 6 shows S-N measurements for 7075-T7351 smooth round coupons for R=0.1, along with the calculated 
fatigue life. The calculated fatigue life is determined by a crack growth calculation (CGC) from the initial 
crack depth to final failure using appropriate stress intensity factor (SIF) solutions and small & long FCGR 
data. In the subsequent paragraphs the input for the CGC, i.e. initial crack depth, SIF solutions, FCGR data 
and final failure criteria, are given.  

Fractography and EDX measurements indicate that for 75% of the coupons the fatigue cracks nucleated from 
constituent particles at the surface, 2% from internal pores and 23% from machine tool markings on the 
surface, even though the coupons were carefully machined and polished. From the constituent particles 5% 
failed from Al2O3 phases, 18% from Mg2Si phases and 77% from Fe-containing phases. The initial 
discontinuity dimensions (IDD) is defined as the actual dimensions of a single initial discontinuity. The Fe-
containing particles at the surface are one of the initial discontinuities and in this case the IDD is regarded as 
the maximum depth of the particle as measured from the surface. The IDD of the majority of the Fe-containing 
phases ranges between 12 and 24 μm. The coupons with Fe-containing constituent particles having an IDD in 
the order of 12 μm, 16 μm or 24 μm are indicated separately in Figure 6. Figure 7 shows an SEM image with 
an example of crack nucleation from an Fe-containing constituent particle with an IDD of 17.7 μm. 
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Figure 5 Small crack growth measurements and small crack depth vs. cycles fit. The long crack 
specimen fit corresponds to the specimen in Figure 4 

 
Figure 6 Measured fatigue life as a function of the maximum stress for R=0.1 and predicted 

fatigue life using (a) small crack (SC) and (b) long crack (LC) growth rate data. The filled dots 
represent specimens that nucleated a crack from Fe-containing constituent particles with IDD in 

the order of 12 μm, 16 μm or 24 μm. The lines indicate the crack growth calculation (CGC) for 
initial crack depths of 12 μm, 16 μm or 24 μm 

Fractography also showed that the crack shape during crack growth is characterized by a circular crack front 
with the center of the circle at the surface of the specimen and the origin of the crack. Toribio et al. give an 
overview of SIF solutions for surface cracks in round bars subjected to tension loading (Toribio et al., 2009). 
The SIF solutions by Astiz and by Carpinteri for circular cracks in round bars are similar for a/D≥0.1, where 
a is the crack depth and D the diameter of the bar (Astiz, 1986; Carpinteri, 1992). However, for a/D<0.1 the  

(a) (b) 
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Figure 7 SEM image of an Fe-containing constituent particle from which crack nucleation 
occurred. The black ellipse has a depth of 17 μm and an a/c ratio of 1.29 

 
Figure 8 Geometry factor, β, for a round bar as a function of the surface crack depth to diameter 
ratio, Eqn (9). For the surface crack in a rectangular cross-section, the thickness T is used for D 

two solutions start to deviate. The value of β goes to 0.74 for the solution of Carpinteri and to 0.35 for the 
solution of Astiz when a/D goes to zero (Toribio et al., 2009). However, the lowest a/D that was used by Astiz 
to determine the SIF solution was 0.059, which resulted in a β of 0.59. This value is close to the value for a 
surface crack in a plate with a/t=0 (see Eqn (6)). For a<<D, it is expected that the influence of the curvature is 

IDD = 17.7 μm 
RIDD = 17 μm 
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very small and the SIF solution should approach the SIF solution of a surface crack in a plate. To avoid 
systematic errors between the determination of small crack FCGR measurements and the small crack growth 
calculation, a β value of 0.5687 was used for a/D=0. This means that β is similar as the β for which the crack 
growth data was obtained and possible effects from the plane stress situation at the surface on the crack shape 
for a<<D is accounted for. When the crack depth increases, the influence of the diameter curvature increases 
and the solutions of Astiz and Carpinteri are used, see Figure 8. The following polynomial is used to describe 
β for the smooth round coupons and 0<a/D≤0.6: 

𝛽𝛽 = 362.6 �𝑑𝑑
𝐷𝐷
�
6
− 683.6 �𝑑𝑑

𝐷𝐷
�
5

+ 507 �𝑑𝑑
𝐷𝐷
�
4
− 174.3 �𝑑𝑑

𝐷𝐷
�
3

+ 26.15 �𝑑𝑑
𝐷𝐷
�
2
− 0.02846 𝑑𝑑

𝐷𝐷
+ 0.5687 (9) 

In the CGC the crack growth rate at the deepest point, i.e. the crack depth (a), is calculated and it is assumed 
that the circular shape of the crack is maintained for a/D>0.1. For a/D<0.01, Eqns (6) and (9) are similar and 
the influence of the curvature of the bar diameter is small. This implies that the a/c ratio should be similar to 
that of small surface cracks, which is 1.29. For the constituent particle in Figure 7 a crack depth of 17 μm and 
an a/c ratio of 1.29 characterizes the shape of the particle well. The initial crack depth and a/c ratio that 
represents the shape and dimensions of the initial discontinuity is referred to as the representative initial 
discontinuity dimension (RIDD). If the a/c ratio is incorporated in the geometry factor, β, the RIDD only 
consists of a crack depth. The RIDD is used as initial crack depth in the CGC. 

Figure 9 shows the FCGR as function of ΔKeff for all long crack specimens. This long crack master curve 
consists of 54 specimens with 11 different maximum stresses and 13 different stress ratios. The master curve 
shows that there are five transition points and six slopes between FCGR of 5.8·10-11 and 10-5 m/cycle. The red 
line indicates the FCGR and pivot points for the small crack growth calculation and is a combination of the 
small FCGR measurement of Figure 5 and the long FCGR master curve. The effective stress intensity range 
is used to obtain the crack growth rates at R=0.1. To obtain the red line in Figure 9 the first slope in region II 

 
Figure 9 Long FCGR master curve as a function of ΔKeff with indications for the transitions 

points. The master curve consists of 54 specimens with 11 different maximum stresses and 13 
different stress ratios. The red line indicates the FCGR and pivot points for the small crack 

growth calculation and is a combination of the small and long FCGR measurements 
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was extended till it intersects with the R=0.1 long crack growth data of Figure 9. From that point onwards the 
R=0.1 long crack data is used for the red line. For the long CGC the same data (red line) is used, except the 
first transition point (TP1) and the first two slopes of the long FCGR master curve are used.  

The CGC is ended when the net-section stress reaches the ultimate tensile strength of the material or when the 
maximum SIF reaches the fracture toughness (KIC). All specimens in the calculations failed by net-section 
overload and the final crack depths in the calculation corresponded well with the measured crack depths (see 
Figure 10).  

There is a good agreement between the calculated fatigue lives and the measured fatigue life of the coupons 
for 310>Smax>375 MPa when the small FCGR data and three different RIDDs are used (see Figure 6). When 
the long FCGR data is used the prediction overestimates the fatigue life for all three RIDDs. 

 
Figure 10 Crack depth at failure as a function of the maximum stress for the smooth round S-N 

coupons (R=0.1) 

4 DISCUSSION 

Figure 3 - Figure 5 show that the fitting method is applicable for small and long crack growth curves and 
results in accurate FCGR curves that are suitable for the exact reconstruction of the measured a-N curves. The 
ability to fit small and long crack growth curves for cracks growing in region I confirms that region I crack 
growth rate is governed by power law behavior. The method can also be used on a-N curves of variable 
amplitude (VA) loading to obtain VA FCGRs (Amsterdam, 2020). 

4.1 Long and small crack growth rate behavior 
Small cracks are faster than expected from long crack growth rate data (Pearson, 1975). For long cracks the 
crack width and length are much larger than the microstructural length scales and generally linear elastic 
fracture mechanics (LEFM) can be applied (Ritchie and Lankford, 1986). Short cracks are small in one 
dimension, but large in another (Ritchie and Lankford, 1986), such as a through crack that nucleates from a 
notch. Small cracks are small in all dimensions and in literature distinctions are made between 
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microstructurally, mechanically and physically small cracks to explain why small cracks can grow at higher 
growth rates than long cracks. (Ritchie and Lankford, 1986; Suresh and Ritchie, 1984). Microstructurally small 
cracks (MSC) have dimensions comparable to the scale of the microstructure and the plastic zone size is less 
than important microstructural features such as the distance between dispersoids, the subgrain and dislocation 
cell sizes or the grain size (Ritchie and Lankford, 1986). The growth of MSC is highly affected by local 
microstructural characteristics and environment (Messager et al., 2020; Murakami and Endo, 1994; Suresh 
and Ritchie, 1984; Taylor, 1992; Yoshinaka et al., 2019). The crack is able to grow in a preferential location 
and orientation and the crack front covers only one or several grains, so that the crack growth is not averaged 
with less advantageously oriented grains (Ritchie and Lankford, 1986). This inhomogeneous sampling of the 
microstructure probably plays a major role in the distinction between small cracks and short through-thickness 
cracks, whose crack fronts must encompasses many grains (Ritchie and Lankford, 1986). 

Figure 9 shows that all long FCGR curves collapse on a master curve for ΔKeff and it is equivalent to state that 
the transition points TP1-TP5 occur at a specific ΔKeff or a specific FCGR. Figure 5 shows the evolution of the 
FCGR as function of ΔK for a MSC and a long crack. The results were both obtained with constant ΔS testing, 
so with naturally increasing ΔK testing, and with the same stress ratio (R=0.773). Therefore, the figure would 
look the same if the FCGR was plotted as function of ΔKeff. The MSC shows faster FCGR compared to the 
long crack, which is consistent with literature. The slopes of the small crack in regions I and II are different 
compared to the long crack. However, Figure 5 and Figure 9 show that the transition from region I to region 
II for the MSC occurs at the same FCGR as for the long crack. The FCGR of the MSC is obtained by the small 
crack length fit using Eqn (7) and hence the transition point from region I to region II can be accurately 
determined. Since the transition from region I to region II (TP1) for small and long cracks occurs at a specific 
FCGR, it is concluded that the transition from region I to region II is governed by the FCGR instead of the 
crack driving force, ΔKeff. Hence, regions I, II and III in Figure 9 are indicated by horizontal dashed lines at 
specific FCGRs. One might argue that crack-closure is not present in the small crack when it is an MSC, but 
it is also expected that limited crack closure is present in the long crack for R=0.773. Even when no closure is 
assumed for the small crack and closure is assumed for the long crack, there is still a gap in ΔKeff at the 
transition TP1. 

The long FCGRs originate from through cracks in M(T) specimens that span many grains in the 6.35 mm 
thickness of the plate and the location of the crack is pre-determined by the location of the 3 mm long EDM 
notch. In region I the crack front runs across many grains and remains in a plane normal to the uniaxial applied 
stress. Hence, the crack growth rate of long cracks is an average over many cycles and many grains. 
Consequently, it has been referred to as stage I-like propagation (Petit and Kosche, 1992). The MSC propagate 
in only a few grains and many crack nucleation and propagation locations are present in a single specimen. 
For a transition from region I to region II at a specific FCGR, the difference between the region I FCGR of 
fast small cracks and average long cracks result in an apparent shift in ΔKeff at which the transition occurs. 
Once it is assumed that the transitions between regions is controlled by the FCGR in conjunction with the 
microstructural features, a lower threshold becomes the direct result of the presence of variability in MSC 
FCGR. If the microstructure is locally very beneficial for a small crack growing in stage I this will give a high 
FCGR constant. Since the MSCs that are measured are always the fastest ones, the threshold of the MSC will 
shift to smaller values compared to the long crack threshold. This confirms inhomogeneous sampling as the 
reason for the lower threshold for small cracks.  

In literature this shift is often referred to as the shift in ΔKthreshold. Kitagawa and Takahashi were the first to 
show that the threshold for short cracks actually decreased with decreasing crack length and the threshold 
stress approached the smooth bar fatigue limit for MSC (Kitagawa and Takahashi, 1976; Suresh and Ritchie, 
1984). The Kitagawa-Takahashi diagram addresses the higher crack growth rate for small cracks by an 
empirical relationship that shifts the threshold for small initial crack lengths, but it does not give a physical 
explanation. Adjustments to the diagram have been proposed by El haddad et al. by adding a fictitious crack 
length to the physical crack length (El Haddad et al., 1979) and Murakami et al. by replacing the crack length 
by the square root of the area (Murakami et al., 1989; Murakami and Usuki, 1989). However, it is still 
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deterministic in a sense that cracks either grow or do not grow depending on which side of the curve they are 
located based on their length or area and stress. However, there is enough evidence that small cracks do lead 
to failure, while they are in the no-grow area and vice versa (Persenot et al., 2020). Addressing the problem 
with probabilistics with proper distributions for the initial crack length and for the variability in small FCGR 
should be able to account for this. It is also capable of explaining the scatter that is observed in S-N curves and 
explain the size effect, i.e. the difference in fatigue life in large specimens or components compared to that of 
small specimens. This is also for notches, where a large and small hole can have the same stress concentration 
factor (Kt), but the volume of material in the high stress region is very different. Once a crack nucleates at a 
suitable location at the edge of the large hole, it grows longer in a high stressed region due to the higher 
radius/crack length ratio. 

4.2 From crack growth rate to fatigue (crack growth) life 
Forman was one of the first to investigate the use of fracture mechanics for crack nucleation from initial 
discontinuities (Forman, 1972). El Haddad et al. incorporated short crack effects to the fracture mechanics by 
adjusting the ΔKth to predict the fatigue life of smooth and notched specimens (El Haddad et al., 1981). Herman 
et al. stated that it is possible to use long cracks with absence of closure effects at high stress ratios to predict 
the crack growth rates of small cracks and use that data to simulate S-N response of actual components 
(Herman et al., 1988). Newman et al. used one power law exponent in regions I & III and multiple exponents 
in regions II to calculate the S-N curve (Newman Jr., 1998; Newman Jr. et al., 2014, 2000, 1986). Newman 
used tabular data to represent the transition points and power law behavior was assumed between the transition 
points (Newman Jr. et al., 1994). The tabular data was obtained by visually drawing solid lines through the 
long crack growth rate data as function of ΔKeff (Newman Jr. et al., 2000). Small crack growth rate data was 
used to establish the ΔKeff for the transition from region I to region II and for the slope in region I. This data 
was used to calculate the S-N curve for a given RIDD. The same approach is followed here, with the exception 
that power law behavior is assumed a priori and the pivot points are determined by fitting the crack length vs. 
cycles curves of small and long cracks directly using multiple exponents (Eqn (7)). This results in accurate 
values for the pivot points and slopes of the small and long FCGR (see Figure 5). Figure 6 clearly shows that 
the CGC overestimates the fatigue life for all three RIDDs when long FCGR data is used. The CGC shows 
good agreement when accurate small FCGR data is used. 

For the crack growth calculations it was assumed that the crack grew immediately from the RIDD and a 
nucleation phase was omitted. Barter et al. expected immediate fatigue crack growth from pre-cracked 
constituent particles under high cyclic stress and observations on crack nucleation from corrosion pits indicated 
that crack nucleation from less sharp stress concentrator occurs essentially immediate upon the application of 
cyclic loading (Barter et al., 2012, 2002; Molent et al., 2011; van der Walde and Hillberry, 2007). Therefore, 
it is expected that crack growth from pre-cracked or cracked Fe-containing particles occurs from the first 
loading cycle for highly loaded smooth S-N specimens. The predicted fatigue lives at maximum stresses 
greater than 350 MPa are greater than the experimental lives (see Figure 6). Adding additional cycles for 
nucleation would only increase the discrepancy between the predicted and experimental fatigue lives. 

A digital twin of an aircraft is a digital model that combines the digital thread, i.e. all historical data of the 
aircraft including; geometry, production, modifications, maintenance, repair and service usage data, with 
degradation models in such a way that this creates a digital copy that represents the physical state of the aircraft. 
The ability to perform in-time inspections or maintenance based upon the information of a digital twin highly 
depends on the accuracy of the material degradation models that are used in the digital twin algorithms. The 
work in this paper can be used to obtain accurate small FCGR data, which is necessary to accurately predict 
the fatigue life of cracks nucleating from initial discontinuities that are naturally present in all engineering 
alloys. The current work is applicable for component locations with low stress concentration factors (Kt). 
Future work will focus on the expansion of this framework to high Kt locations, variable amplitude and 
probabilistics, such that the framework can be used to predict the fatigue life distribution for cracks nucleating 
from initial discontinuities for entire engineering structures under realistic loading conditions. 
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5 CONCLUSIONS 

By introducing mathematical pivot points in the Paris equation it is possible to directly fit the crack length vs. 
cycles (a-N) curve to obtain the FCGR as function of ΔK. The fitting method results in accurate FCGR curves 
that are suitable for the exact reconstruction of the measured a-N curves. The ability to accurately fit a-N curves 
for microstructurally small and long cracks growing in region I confirms that region I FCGR is governed by 
power law behavior. The same applies for crack growth in region II and III, indicating that crack growth is 
governed by power law behavior in all regions. The results for constant ΔS testing and therefore naturally 
increasing ΔK testing of small and long cracks show that crack growth rates of small cracks in region I are 
faster. However, the transition from region I to region II occurs at a specific fatigue crack growth rate for both 
small and long cracks, which results in an apparent shift in ΔK at the transition. This points at inhomogeneous 
sampling as one of the reasons for the lower threshold of small cracks. The accurate small crack growth rates 
that are obtained using the new methodology are used to calculate the fatigue life from initial discontinuity 
dimensions. The calculated fatigue lives correspond to the experimental fatigue lives that are obtained for 
smooth S-N specimens with the same initial discontinuity dimensions.  
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